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Abstract
Iterative ensemble filters and smoothers are now commonly used for geophys-
ical models. Some of these methods rely on a factorization of the observation
likelihood function to sample from a posterior density through a set of “tem-
pered” transitions to ensemble members. For Gaussian-based data assimilation
methods, tangent linear versions of nonlinear operators can be relinearized
between iterations, thus leading to a solution that is less biased than a single-step
approach. This study adopts similar iterative strategies for a localized particle fil-
ter (PF) that relies on the estimation of moments to adjust unobserved variables
based on importance weights. This approach builds off a “regularization” of the
local PF, which forces weights to be more uniform through heuristic means.
The regularization then leads to an adaptive tempering, which can also be com-
bined with filter updates from parametric methods, such as ensemble Kalman
filters. The role of iterations is analyzed by deriving the localized posterior prob-
ability density assumed by current local PF formulations and then examining
how single-step and tempered PFs sample from this density. From experiments
performed with a low-dimensional nonlinear system, the iterative and hybrid
strategies show the largest benefits in observation-sparse regimes, where only a
few particles contain high likelihoods and prior errors are non-Gaussian. This
regime mimics specific applications in numerical weather prediction, where
small ensemble sizes, unresolved model error, and highly nonlinear dynamics
lead to prior uncertainty that is larger than measurement uncertainty.
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1 INTRODUCTION

Particle filters (PFs) are sequential Monte Carlo methods
that can solve data assimilation problems characterized by
non-Gaussian error distributions for prior model variables

or measurements (Doucet et al., 2001). From a geoscience
perspective, PFs contain several theoretical properties
that make them attractive for research and environmen-
tal prediction. Namely, they preserve dynamical balances
during data assimilation update steps; they require no
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special treatment for nonlinear measurement operators or
non-Gaussian errors; and they provide an elegant solu-
tion to the underlying Bayesian filtering problem. Recent
efforts applying PFs for geophysical models have resulted
in “localized” PFs, which approximate a given data assimi-
lation application as a large set of loosely coupled problems
that can be solved independently using relatively small
ensembles—an approach long used for ensemble Kalman
filters (EnKFs). These efforts resulted in a large variety of
filtering and smoothing methods, including those intro-
duced by Bengtsson et al. (2003), Poterjoy (2016), Penny
and Miyoshi (2016), Poterjoy and Anderson (2016), Lee
and Majda (2016), Robert and Künsch (2017), Chustag-
ulprom et al. (2016), and Morzfeld et al. (2018); see Van
Leeuwen et al. (2019) for a more exhaustive list of PF
approaches designed for high-dimensional applications.
Though localization delivers a potentially transformative
strategy for implementing PFs for high-dimensional sys-
tems, this technique alone is often inadequate for real geo-
physical applications. For example, the conditions for PF
weight collapse identified in past studies (e.g., Bengtsson
et al., 2008; Bickel et al., 2008; Snyder et al., 2008) still hold
within the neighborhood of observations for localized PFs.
Therefore, filter degeneracy is still inevitable for dynami-
cal systems that are observed by many accurate, collocated
measurements, or when observation-space prior statistics
are heavily biased.

Data assimilation problems in atmospheric sci-
ence that are hypothesized to benefit from PF
methodology—because of strong nonlinearity in model
dynamics and measurement operators—also tend to be
characterized by the problems already listed herein. For
example, data assimilation for convective weather regimes
introduces many challenges for Gaussian-based filters,
owing to the non-Gaussian errors needed to quantify
model and measurement uncertainty and nonlinearity
in the underlying system dynamics and observing sys-
tems (Posselt et al., 2014; Posselt, 2016). At the same
time, prior and posterior statistics are often mischaracter-
ized, owing to the large computational cost of generating
many high-resolution ensemble members or the presence
of unknown error sources in physical parametrization
schemes for turbulence, cloud microphysics, land-surface
processes, and so on. Data assimilation for tropical
cyclones presents a similar set of challenges, except
the most abundant measurements come from radiome-
ters onboard satellites. In general, these characteristics
present difficulties for numerous research and prediction
problems, including many outside of weather forecasting.

This study introduces new methodology for the local
PF described in Poterjoy (2016) and revised in Poterjoy
et al. (2019), which targets the type of data assimilation
problems just discussed. The new approaches rely on a

factorization of particle weights to draw samples from
the localized posterior density through successive itera-
tions. It borrows from past studies that introduce iterations
for EnKFs and smoothers to cope with mildly nonlin-
ear model dynamics and measurement operators (Emerick
and Reynolds, 2012; 2013). In the context of PFs, these
iterations serve a different purpose. Each iteration uses
a regularization coefficient on particle weights to main-
tain a threshold effective ensemble size. For filters that
update particles to match the first two posterior moments
(e.g., Feng et al., 2020) accurate particle updates can be
achieved without higher-order statistics. In addition to
showing significant benefits over non-iterative formula-
tions of the local PF, the method presents a natural frame-
work for extending the local PF into a hybrid PF–EnKF, as
proposed by past studies (Frei and Künsch, 2013; Chustag-
ulprom et al., 2016; Robert and Künsch, 2017; Grooms and
Robinson, 2021).

This article is organized in the following manner.
Section 2 discusses the mathematical framework for local-
ized PFs, including a derivation of the posterior probabil-
ity density function (pdf) assumed by the Poterjoy et al.
(2019) local PF. Calculations of this pdf are needed to
illustrate the behavior of the local PF with and without
iterations. Section 3 discusses the collapse of localized PFs
to provide motivation for regularized, iterative, and hybrid
approaches, which are discussed in Section 4. Section 5
shows numerical experiments performed using a bivariate
problem and the 40-variable dynamical system of Lorenz
(1996). The last section discusses major findings from this
study.

2 LOCALIZED PARTICLE
FILTERS

This section introduces a subset of localized PFs, which
behave similarly to the filter introduced in Poterjoy (2016).
The primary goal of this section is to provide context for the
new filtering methodology introduced in Section 4, which
requires a clear definition of the posterior density certain
localized PFs attempt to sample from. We direct readers to
Farchi and Bocquet (2018) for a comprehensive review of
strategies recently adopted for this purpose.

For geophysical data assimilation, the state vector rep-
resenting variables for a dynamical system is treated as a
random variable x ∈ RNx with the underlying goal of esti-
mating various properties of the probability density p(x).
The time propagation of x is approximated through a pre-
diction model xt+1 = M(xt) + 𝜂t, where 𝜂t is an additive
model error. The probability density for x is updated peri-
odically to reflect new information from incomplete and
noisy measurements y ∈ R

Ny , where the mapping between
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model variables and observations is given by y = H[x] + 𝜖.
The error 𝜖 is the combined error from instruments on
observing systems, representativeness error, and imperfect
estimates of H() itself. When estimating the probabilistic
evolution of x, we are often interested in the filtering den-
sity p(xt|y0∶t), which is the conditional probability of x at
the current time given all current and past measurements.
By drawing samples from this density and passing them
through M(), we can estimate various parts of p(xt+𝜏 |y0∶t)
for some forecast time 𝜏 > 0. This framework is used to for-
mulate sequential Monte Carlo filters, such as EnKFs and
PFs, thus providing the cornerstone of probabilistic envi-
ronment prediction systems such as those used for weather
forecasting (e.g., Houtekamer and Zhang, 2016).

2.1 The localized posterior probability
density

The local PF attempts to sample from a posterior that
assumes a gradual decoupling of marginal state vari-
ables displaced spatially, similar to EnKFs used for
high-dimensional geophysical applications. Derivations of
this probability density are avoided in past studies, pri-
marily because it is not needed to draw samples from
approximate forms of this density. Given the nature of
this study, we provide a transparent examination of the
localized probability density.

Consider the case where we are given a prior den-
sity p(xt) and need to approximate the conditional den-
sity p(xt|yt). For simplicity, ignore time indices and con-
sider the two-dimensional problem: x = [u v]T, where v
is observed directly with measurement y. The sequential
Monte Carlo framework requires that we sample from
the conditional probability distribution p(x|y). One way of
conceptualizing this problem is to consider the factoriza-
tion

p(x|y) = p(u, v|y),
= p(u|v, y)p(v|y),
= p(u|v)p(v|y), (1)

where p(u|v) = p(u|v, y) follows from the Markovian mem-
oryless assumption for the observation process. In this
form, we can sample from p(x|y) by drawing from p(v|y)
and using the result to sample from p(u|v). For data assim-
ilation purposes, these steps can also be envisioned as a
particle “update” for v (or observation-space variable) fol-
lowed by an update to unobserved model variables. For
example, an ensemble square-root filter can be formulated
to perform linear regression to update u in a manner that
is consistent with changes to v (Anderson, 2003). This step
reflects the deterministic coupling between Gaussian ran-
dom variables; see Reich and Cotter (2015, chapter 2) for a

review. The coupling is not unique for the Gaussian case,
which is why multiple types of ensemble square-root filters
exist.

Multiple filters that are widely used in public com-
munity software packages adopt the serial algorithm
described in Anderson and Collins (2007), which exploits
the factorization described earlier herein. Examples
include the NCAR Data Assimilation Research Testbed
(Anderson et al., 2009) and the NOAA Gridpoint Sta-
tistical Interpolation (Shao et al., 2016) system used for
operational weather prediction in the United States. By
construction, the Poterjoy (2016) local PF follows the same
algorithmic framework, so it can be implemented easily
for a broad selection of geophysical models. Therefore, it
is important to examine how the filter solves the bivariate
data assimilation problem introduced in this section.

First, consider the delta function approximation of the
prior pdf made by PFs:

p(x) ≈ 1
Ne

Ne∑

n=1
𝛿(x − xn),

= 1
Ne

Ne∑

m=1

Ne∑

n=1
𝛿(u − um)𝛿(v − vn)𝛿mn, (2)

where p(x) is expressed as a sum of products between Dirac
delta functions for variables u and v, and 𝛿mn is a Kro-
necker delta function. We can then write the conditional
probability density for x given y using Bayes’ theorem:

p(x|y) = p(u, v|y),
= p(u|v)p(v|y),
∝ p(u|v)p(v)p(y|v),

≈
Ne∑

m=1

Ne∑

n=1
wn

𝛿(u − um)𝛿(v − vn)𝛿mn, (3)

where wn = p(y|vn)∕
∑Ne

k=1p(y|vk). We will denote the
resulting approximation of the posterior density as
ppf(u, v|y), since it is the common form used for PFs.

For many geophysical problems, it is practical to
assume state variables displaced by a critical physical dis-
tance have independent errors. For example, we can write

p(u, v|y) ≈ pi(u, v|y),
= p(u|v)p(v|y),
= p(u)p(v|y),

=
Ne∑

m=1

1
Ne

𝛿(u − um)
Ne∑

n=1
wn

𝛿(v − vn),

= 1
Ne

Ne∑

m=1

Ne∑

n=1
wn

𝛿(u − um)𝛿(v − vn), (4)
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where pi() denotes an independent error approximation
for all variables in x. The approximate posterior, pi(u, v|y),
can be factored in the same manner as ppf(u, v|y) (see
Equation (3)) to show that the assumed conditional den-
sity for the pair of variables is p(um|vn) = 1∕Ne for all com-
binations of n and m, and zero otherwise, which extends
the number of solutions with non-zero probability from Ne
to NNx=2

e . This approximation greatly reduces the sample
size needed to apply the bootstrap PF for dynamical sys-
tems characterized by large sets of loosely coupled systems;
for example, see Poterjoy, (2016, figure 3). Lee and Majda
(2016) adopt a similar strategy to form a “block” localiza-
tion of the bootstrap PF, which applies Equation (3) for
state variables in the vicinity of observations in state space
and Equation (4) for all remaining variables.

For data assimilation applications targeted by this
research, such as weather prediction, the decoupling must
be specified carefully to maintain true cross-variable error
dependencies that come from physical processes depicted
by the dynamical model. Not doing so can result in
artificial dynamical imbalances during model integration
(Kepert, 2009; Greybush et al., 2011), which reduce pre-
dictive skill. This challenge is complicated by the realiza-
tion that spatial structure of error correlations tends to be
anisotropic and dependent on the underlying flow (e.g.,
Poterjoy and Zhang, 2011). Furthermore, errors do not
often exhibit abrupt spatial changes that would permit the
use of Equation (4) alone for applications of this type. As is
true for localized EnKFs, large correlations will inevitably
need to be modulated by localization to reduce sampling
error. Under these circumstances, localization can intro-
duce a bias in the resulting posterior estimate, but the bias
is generally smaller than what would be obtained with-
out localization (for small Ne), which is why localization
is useful for many applications. Therefore, an appropriate
decoupling should reflect a combination of ppf(u, v|y) and
pi(u, v|y). For example, we can choose a conditional prob-
ability density of the form p(um|vn) = 𝛿mn𝜌u,v + (1∕Ne)(1 −
𝜌u,v), where 𝜌u,v is a “localization” coefficient controlling a
coupling between the two variables. Note that this choice
resorts back to the two limiting cases when 𝜌u,v = 0 and
𝜌u,v = 1. The resulting posterior density for u and v is then
approximated using

p(u, v|y) ≈ pl(u, v|y),

=
Ne∑

m=1

Ne∑

n=1
wn

[

𝛿mn𝜌u,v +
1

Ne
(1 − 𝜌u,v)

]

× 𝛿(u − um)𝛿(v − vn), (5)

where pl() indicates the localized posterior pdf. For geo-
physical applications, 𝜌 is typically modeled by an empir-
ical correlation function, which depends only on distance

in physical space; see Lei and Anderson (2014) for a
review. This function can be chosen to satisfy a number of
properties, such as smoothness and compactness (Gaspari
and Cohn, 1999). The latter quality leads to a straight-
forward parallelization of filters that process observations
serially, such as those in the NCAR Data Assimilation
Research Testbed and NOAA Gridpoint Statistical Interpo-
lation (Anderson et al., 2009; Shao et al., 2016).

The choice for pl(u, v|y) introduced in Equation (5)
leads to

p(u|y) ≈ ∫
R

pl(u, v|y) dv,

=
Ne∑

m=1

Ne∑

n=1
wn

[

𝛿mn𝜌u,v +
1

Ne
(1 − 𝜌u,v)

]

𝛿(u − um),

=
Ne∑

m=1

Ne∑

n=1
wn

𝛿mn𝜌u,v𝛿(u − um)

+
Ne∑

m=1

Ne∑

n=1

wn

Ne
(1 − 𝜌u,v)𝛿(u − um),

=
Ne∑

m=1
wm

𝜌u,v𝛿(u − um)

+
Ne∑

m=1

1
Ne
(1 − 𝜌u,v)𝛿(u − um),

=
Ne∑

m=1

[(

wm − 1
Ne

)

𝜌u,v +
1

Ne

]

𝛿(u − um), (6)

which is identical to the marginal posterior density used
for the local PF in Poterjoy et al. (2019).

To extend the bivariate example to multiple state vari-
ables and observations, the Poterjoy (2016) and Poterjoy
et al. (2019) filters assimilate all observations at a given
time serially and use a joint observation–model space
localization that is identical to the approach discussed in
Anderson and Collins (2007). This strategy assumes obser-
vations have independent errors and well-defined physical
locations; the latter assumption allows observation-space
priors to be treated as augmented state variables and
updated alongside all other variables in x. Appendix A dis-
cusses potential ways of extending Equation (5) for Ny > 1
and Nx > 2.

PFs designed to operate within pre-existing local
ensemble transform Kalman filter frameworks (e.g., Penny
and Miyoshi, 2016; Potthast et al., 2019) adopt a slid-
ing window localization identical to Hunt et al. (2007).
This strategy is also effective at providing the desired
spatial decoupling, but results in slightly different for-
mulations for the conditional distributions specified ear-
lier herein. The two methods have similar properties for
bivariate applications, which will be explored through
simple examples in the following sections. We also note
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that joint observation–model space localization and slid-
ing window localization are suboptimal for assimilating
non-local observations, such as satellite radiance. Readers
are encouraged to review Lei and Anderson (2014) for a
discussion on the positive and negative aspects of different
localization methodologies.

2.2 Benefits and drawbacks of the
localized posterior

We can visualize how PFs approximate pl(x|y) for a bivari-
ate application to demonstrate the influence of 𝜌 on the
assumed posterior pdf. Consider the example shown in
Figure 1a, where 10 particles are sampled from p(u, v) and
reweighted based on p(y|u, v), where y measures v directly.
The value of each sampled particle is indicated in the u–v
plane shown in Figure 1 by black circles. The red markers
in this figure indicate particle weights, which are propor-
tional to the posterior joint probability of u and v, with
larger markers corresponding to a larger weight. Each axis
also shows blue markers, which indicate the marginal
posterior probability of both u and v.

Figure 1a shows the sample-estimated pl(u, v|y) when
𝜌u,v = 1, which is equivalent to ppf(u, v|y). Note that the
marginal posterior probabilities for u and v are the
same for particles with like indices—an assumption that
becomes relaxed for 𝜌u,v < 1. Figure 1b,c shows how the
sample-estimated pdf changes as 𝜌u,v decreases to 0.8 and
0.0. The marginal weights for the observed variable v
remain the same, but they become equal to 1∕Ne for u to
reflect the decoupling. As shown in Figure 1, localization

leads to non-zero probability for all combinations of sam-
pled u and v values while reducing the joint probability
of solutions with matching indices. As a result, the num-
ber of plausible model states increases from 10 to 100. The
new solutions that arise from localization are linear com-
binations of the original particles. The resulting pdf is less
likely to collapse onto the original samples (marked by
circles), thus partially solving the filter degeneracy issues
discussed in the previous section. At the same time, there is
no guarantee that samples drawn from parts of the pdf that
represent combinations of particles will satisfy the model
equations used to produce particles (Van Leeuwen, 2009;
Farchi and Bocquet, 2018). Most notably, forming combi-
nations of particles comprised of geophysical quantities,
such as wind, temperature, and pressure, will ultimately
yield large discontinuities between grid points, regardless
of whether 𝜌 is modeled using a spatially smooth function.
Though this problem is inevitable for localized PFs, strate-
gies exist for reducing discontinuities; some are discussed
in the following subsection.

2.3 Sampling from the localized
posterior

Drawing samples from pl(x|y) becomes non-trivial for
even moderately sized problems, which is why several
forms of localized PFs have been proposed in recent
years. In this section, we discuss two approaches that
have been used for high-dimensional geophysical appli-
cations. Before discussing these strategies, it is impor-
tant to note that methodology already exists for drawing

(a) (b) (c)

F I G U R E 1 A bivariate demonstration of how localization modulates estimates of (blue) marginal and (red) joint probabilities from
(black circles) prior particles (Ne = 10). Light gray lines indicate the sample value for variables u and v, and the black dashed line shows the
value of an observation. Results are shown for (a) 𝜌u,v = 1, (b) 𝜌u,v = 0.8, and (c) 𝜌u,v = 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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particles from pl(u, v|y) via a set of sequential sampling
steps for each variable (Metref et al., 2014). This approach
can be expanded for Nx > 2 and Ny > 1, but it is compu-
tationally prohibitive for high dimensions. Though spatial
discontinuities still remain following this sampling, the
dependence of marginal samples on neighboring marginal
samples should yield the smallest possible discontinuities.

To sample from pl(x|y), Penny and Miyoshi (2016)
form a transform matrix for each variable in x, which
resembles an independent sampling at each physical grid
point for models with a spatial dimension. Starting with
a transform matrix populated by binary coefficients, they
apply a smoothing operator that turns the coefficients into
continuous values between 0 and 1, thus reducing dis-
continuities in posterior samples. To achieve stable results
for weather applications, Robert et al. (2018) and Potthast
et al. (2019) apply a similar form of localized PF update,
but on a coarse model grid, which is then extrapolated to
the native domain after data assimilation, thus reducing
discontinuities in the updated particles.

Poterjoy (2016) propose a localized PF that uses the
strategy outlined in Anderson and Collins (2007) for
performing joint observation- and model-space updates
in parallel. This approach processes observations seri-
ally to perform an observation-space update via bootstrap
sampling of particles, followed by a model-space update
that preserves the non-localized PF solution where 𝜌 =
1 and the prior solution when 𝜌 = 0. By performing the
observation-space update first, posterior particles can be
adjusted in a manner that is consistent with resampled
particles in the vicinity of observations. For the remain-
ing variables, the filter uses an approximation to the more
general sampling strategy outlined in Metref et al. (2014).
When 0 < 𝜌 < 1, this filter only guarantees that the first
two moments of marginal quantities in pl(x|y) are matched
by posterior particles.

For a single observation, the equation used by Poterjoy
(2016) and Poterjoy et al. (2019) for state updates is given
by

xn
y ← xy + r1◦(xkn − xy) + r2◦(xn − xy), (7)

where xy is the mean of pl(x|y), ◦ is an element-
wise product, and the vectors r1 and r2 ensure the
resulting particles match the first two moments of the
marginals of pl(x|y). The derivation of r1 and r2 also
constrains the posterior particles to match particles sam-
pled using marginal weights for p(v|y), which are given
by indices k1 … kNe in Equation (7); see Poterjoy (2016)
for details. Equation (7) avoids the need to include a
smoothing operator for a dynamical system character-
ized by highly correlated errors on a spatial grid for two
reasons:

1 Particle updates consider the localized form of p(u|v)
discussed in Section 2; that is, updates to u are a func-
tion of the localization coefficient and particle indices
obtained by sampling from p(v|y). This property leads
to a more consistent representation of pl(x|y).

2 Solutions are only required to fit the first two moments
of pl(x|y), which tend to vary smoothly in space.

The update strategy adopted by Poterjoy (2016) and
Poterjoy et al. (2019) is similar to the rank histogram fil-
ter of Anderson (2010), but with Equation (7) replacing
a Kalman filter update. We refer readers to Poterjoy et al.
(2019) for a full algorithmic description of this filter along
with an exhaustive list of variable definitions.

The computational costs of the Poterjoy (2016) and
Poterjoy et al. (2019) filters are much smaller than strate-
gies that can sample perfectly from the localized pos-
terior discussed in Section 2 (Metref et al., 2014), thus
making them affordable for high-dimensional problems
such as weather prediction (e.g., Poterjoy et al., 2021).
Nevertheless, serial filters are more costly than filters
that perform an independent sampling step for each
variable—but require additional steps to model marginal
dependence. The fitting of posterior particles to only
the first two moments for unobserved quantities also
presents problems for highly non-Gaussian applications
(see Section 5), which is why past versions of this fil-
ter use an additional probability mapping step after
resampling. Poterjoy (2016) and Poterjoy et al. (2019)
refer to this step as kernel density distribution mapping
(KDDM).

3 THE COLLAPSE OF LOCALIZED
PARTICLE FILTERS

Bengtsson et al. (2008), Bickel et al. (2008), and Sny-
der et al. (2008) outline conditions for collapse of the
standard PF with Gaussian errors. Here, collapse refers
to situations where importance weights equal zero for
all but one particle, and the standard PF is the boot-
strap PF with the prior as the proposal density. To
prevent weight collapse, Snyder et al. (2008) conclude
that Ne must increase exponentially with Var[

∑Ny
𝑗=1V n

𝑗
],

where V n
𝑗
= − ln

[
p(yi|xn)

]
, and the variance is taken over

the proposal density—or prior density in this case. For
example, Var[

∑Ny
𝑗=1V n

𝑗
] would be large if a dense network

of accurate measurements were assimilated for a dynam-
ical system containing many variables with independent
errors.

Localization provides one mechanism for reducing
weight collapse. For example, Poterjoy (2016) chooses
a marginal probability density for variable x𝑗 in x that
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expands Equation (6) for multiple observations with inde-
pendent errors:

pl(x𝑗|y) = A
Ne∑

n=1

Ny∏

i=1

[(

wn
i −

1
Ne

)

𝜌i,𝑗 +
1

Ne

]

𝛿(x𝑗 − xn
𝑗
),

= A
Ne∑

n=1

Ny∏

i=1
�̂�

n
i,𝑗𝛿(x𝑗 − xn

𝑗
),

= A
Ne∑

n=1
𝜔

n
𝑗
𝛿(x𝑗 − xn

𝑗
), (8)

where wn
𝑗
∝ p(yi|xn), A is a normalization factor, 𝜔n

𝑗
is the

marginal weight for the nth particle, and 𝜌i,𝑗 is the local-
ization coefficient for the ith observation and 𝑗th state
variable. The localized contribution of each observation on
𝜔

n
𝑗

is denoted by �̂�
n
i,𝑗 , so we can introduce V n

i,𝑗 ≡ − ln(�̂�n
i,𝑗).

Choosing 𝜌i,𝑗 < 1 directly reduces Var[
∑Ny

i=1V n
i,𝑗] by cap-

ping the impact of distant observations on local weights.
The resulting estimate of p(x𝑗|y) is biased, since there
is no guarantee it will converge to the Bayesian poste-
rior as Ne → ∞. Its numerical approximation, however, is
less prone to weight collapse, thus providing a practical
trade-off for small Ne. The same concept holds for all other
PFs that enforce local constraints on posterior calculations
from measurements.

For geophysical applications with dense networks of
observations, 𝜌i,𝑗 can be insufficient for preventing weight
collapse. Most noticeably, the arguments put forth by
Bengtsson et al. (2008), Bickel et al. (2008), and Sny-
der et al. (2008) still hold when 𝜌i,𝑗 = 1, which is prob-
lematic for assimilating very accurate measurements or
many collocated measurements using localized PFs. In
addition, the dynamical system of interest places a min-
imum bound on length scale parameters used to charac-
terize 𝜌i,𝑗 . This factor is important for global weather and
ocean prediction models, where large spatial error correla-
tion structures—commensurate with the Rossby radius of
deformation—may dictate the minimum length scale for
localization functions. Therefore, alternative strategies are
needed to maintain the stability of PFs when 𝜌i,𝑗 provides
an insufficient reduction in Var[

∑Ny

i=1V n
i,𝑗].

4 NEW FILTER METHODOLOGY

This section introduces multiple strategies for overcoming
the obstacles discussed in Section 3. Each of these meth-
ods builds naturally off one another, following in sequence
from regularization to hybridization of PFs with paramet-
ric filters. They also resemble strategies that have already
been adopted for Gaussian filters and smoothers, as well
as different forms of PFs.

Before discussing new methodology, it is important to
note that EnKFs suffer the same fate as PFs for small
Ne (e.g., Morzfeld et al., 2017), which motivates the use
of prior and posterior error variance inflation techniques.
Approaches to variance inflation can take multiple forms.
Common strategies include multiplying ensemble pertur-
bations by a factor greater than unity (Anderson and
Anderson, 1999), adding random noise to posterior sam-
ples (Houtekamer and Mitchell, 2005), or relaxing a por-
tion of the posterior update to ensemble perturbations
back to the prior (Zhang et al., 2004; Whitaker and Hamill,
2012). These strategies, as well as combining PFs with
other filters (e.g., Stordal et al., 2011; Frei and Künsch,
2013), applying tempered transitions and particle flow
methodology (e.g., Del Moral et al., 2006; Daum and
Huang, 2011), or modifying the transition density between
observation times (Van Leeuwen, 2010), are often used to
prevent weight collapse for PFs. Likewise, PFs often adopt
“pre-” and “post-regularization” schemes (Musso et al.,
2001), which are comparable to prior and posterior addi-
tive inflation algorithms used in the geophysical modeling
community for EnKFs. Readers are encouraged to review
Farchi and Bocquet (2018) for comparisons of these meth-
ods using low-dimensional numerical experiments with
PFs.

More relevant to the current study, Poterjoy et al.
(2019) discuss mechanisms for artificially increasing pos-
terior error variance in a PF framework—in a manner
that does not introduce large deviations from potentially
non-Gaussian error approximations by the filter. They pro-
pose a strategy that uses observation error inflation to
broaden the region of high posterior probability, using
“effective sample size” as a metric for determining the
amount of inflation. Effective sample size is a heuristic
measure of the degrees of freedom in a weighted sam-
ple and is defined by Neff = [

∑
(wn)2]−1 (Liu and Chen,

1998). The observation error inflation acts as regular-
ization strategy, similar to techniques long used in the
machine-learning community to prevent the overfitting
of data (Moody, 1991). The very nature of this approach
means that it does not change the shape of posterior distri-
butions in the same manner as the multiplicative and addi-
tive inflation methods listed in the previous paragraph.
Poterjoy et al. (2019) adopted this form of regularization to
maintain filter stability in experiments applying the local
PF for a real weather event using Ne = 36.

4.1 A new regularized local particle
filter

As an alternative to Poterjoy et al. (2019), we pro-
pose applying regularization directly to marginal weights,
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which take into account the cumulative effect of measure-
ments on posterior density calculations at a given grid
point. This strategy has a number of desirable properties,
which will be discussed in the following subsections.

First, recall that for independent Gaussian errors,
weight collapse at the 𝑗th grid point occurs as Var[

∑Ny

i=1V n
i,𝑗]

becomes large. The most straightforward means of enforc-
ing an upper bound on this term is to multiply V n

i,𝑗 by a
coefficient 𝛽𝑗 , where 0 ≤ 𝛽𝑗 ≤ 1. This strategy is equivalent
to raising particle weights to a power of 𝛽𝑗 so that 𝜔n

𝑗
∝

∏Ny

i=1(�̂�
n
i,𝑗)

𝛽
𝑗 . As discussed in Poterjoy et al. (2019), a natural

choice of 𝛽𝑗 is one that changes dynamically as a function
of Neff, which requires precomputing particle weights at
each grid point and numerically solving for the largest 𝛽𝑗
that gives Neff ≥ Nt

eff, where Nt
eff is a specified threshold

value. In the absence of localization, the methods proposed
in Poterjoy et al. (2019) and the current article are equiv-
alent to inflating the measurement error variance for all
observations by a factor of 1∕𝛽𝑗 .

To understand how the new approach differs from
Poterjoy et al. (2019), recall that the observation error infla-
tion strategy of Poterjoy et al. (2019) first computes a set
of 𝛽 coefficients {𝛽1, … , 𝛽Ny

}, where each 𝛽 i is calcu-
lated for the observation-space weights {w1

i , … ,wNe
i } that

go into the calculation of �̂�n
i,𝑗 in Equation (8). Following

this step, the final inflation coefficient assigned to the ith
observation takes into account 𝛽 from nearby observations
via

𝛽i = 1 +
Ny∑

k=1
(𝛽k − 1)𝜌i,𝑗 . (9)

In Equation (9), 𝜌i,𝑗 is the same localization coefficient
used for data assimilation. Localization coefficients act
as heuristic regression terms that spread the observa-
tion error inflation value to nearby observations, thus
preventing potential weight collapse caused by assimi-
lating multiple accurate measurements. This approach
differs from the regularization method proposed in the
current study, which directly modulates the variance in
{𝜔1

i,𝑗 , … , 𝜔
Ne
i,𝑗 } for a given grid point, rather than modify-

ing observation likelihoods. The benefits of this approach
over Equation (9) are demonstrated via numerical experi-
ments in Section 5. Interested readers are also encouraged
to see Appendix B for details on how to reduce round-off
error and computational cost for localized particle weight
calculations, which are needed prior to estimating each 𝛽𝑗

for regularization.

4.2 An iterative local particle filter

This subsection introduces an adaptive tempering
approach that builds off of the regularization discussed

in the previous subsection. As mentioned already, tem-
pering (Neal, 2001) is another mechanism for reducing
filter degeneracy for PFs. In general, tempering exploits a
factorization of the likelihood to break the particle update
step into a sequence of smaller update steps, thus allowing
for mutations between iterations; see Van Leeuwen et al.
(2019) for an extended discussion on the use of tempering
for PFs. Iterative approaches of this type are already used
extensively to form ensemble filters and smoothers that
sample from non-Gaussian posteriors via a set of intermit-
tent linear updates to prior particles (e.g., Zupanski, 2005;
Sakov et al., 2012; Emerick and Reynolds, 2012; Emerick
and Reynolds, 2013; Bocquet and Sakov, 2014; Stordal and
Elsheikh, 2015; Evensen, 2018). These strategies some-
times include a periodic relinearization of dynamical
models and measurement operators about more accurate
reference solutions, similar to incremental formulations
of four-dimensional variational data assimilation methods
(Courtier et al., 1994), or generating multiple ensemble
predictions each iteration to better estimate temporal
covariance.

Dubinkina and Ruchi (2019) recently applied temper-
ing for the ensemble transform PF (Reich, 2013), demon-
strating advantages over regularization for problems with
non-additive model errors. When applied to the Poterjoy
et al. (2019) local PF, tempering serves a different purpose,
which is to reduce errors introduced by updating unob-
served variables based on the first two moments alone.
In this section, we discuss two different forms of tem-
pering. The first approach is to apply a factorization of
the likelihood, as in past studies. That is, let p(x|y) =
p(x)p(y|x)𝛼1+𝛼2+···+𝛼Nk , where

∑Nk
k=1𝛼k = 1. The tempering

introduces an extra recursion to the posterior update;
that is,

p(x|y) ∝ p(x)p(y|x)𝛼1 ...p(y|x)𝛼Nk ,

= p𝛼1(x|y)p(y|x)
𝛼2 ...p(y|x)𝛼Nk ,

⋮

= p𝛼Nk
(x|y), (10)

where p𝛼k (x|y) is the posterior probability after the kth
iteration of assimilating y with tempering coefficients
𝛼1, … , 𝛼k. Note that for Gaussian likelihoods, this strategy
is the same as assimilating y Nk times with the observa-
tion error covariance inflated by 1∕𝛼k for the kth itera-
tion. When the prior is used as a proposal density and
𝜌i,𝑗 = 1, the tempering provides no asymptotic change in
the posterior density estimate. But when combined with
localization or other forms of particle mutation, the extra
recursion adds diversity to posterior particles, which is
beneficial for small ensembles.

Because tempering has no benefits when 𝜌i,𝑗 = 1 in the
local PF, we introduce an additional mixing coefficient for
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particles, which increases the contribution of prior pertur-
bations in the particle update equation. This is achieved by
multiplying r1 by a scalar 𝛾 in Equation (7), where 𝛾 is spec-
ified to be a constant between 0 and 1. The prior weighting
vector r2 is then recalculated to preserve the marginal pos-
terior error variance for a given 𝛾 ; see Appendix C for
details. The resulting particles are then recentered about
the posterior mean. Typical values for 𝛾 range from 0.3 to
1, with 𝛾 tending toward 1 (i.e., no mixing) for larger Ne.
It is important to mention that particles removed during
resampling are the most affected by mixing, since the order
determined for selected particles guarantees that surviving
particles maintain the same index. The tempering strategy,
combined with mixing, also does not completely replace
the need for regularization, since choosing too small an Nk
can easily lead to local weight collapse.

The tempering provides additional benefits for PFs that
fit posterior moments, such as the Poterjoy (2016) and
Poterjoy et al. (2019) filters. Suppose particle weights are
regularized, so that Neff is close to Ne, and the bootstrap
resampling step leads to one particle being removed and
replaced by another. The resulting particles are all assigned
equal weights of 1∕Ne following the sampling. Equiva-
lently, one can assign equal importance weights to all prior
particles except the pair being removed or sampled twice;
in this case, the removed particle would have a weight
of zero and the duplicated particle would have a weight
of 2∕Ne. Knowledge of the first moment alone (estimated
using importance weights) is then sufficient for identify-
ing how the removed particle should be updated to provide
the same solution as the standard bootstrap PF. Likewise,
the local PF update can be separated into a sequence of
sampling and merging steps, which only fit the first two
moments, as in Equation (7). In doing so, the resulting
update achieves a set of particles that more closely resem-
bles samples from the localized PF density introduced
in Equation (5). This property of tempering is illustrated
through numerical simulations in Section 5.

Similar to iterative methods adopted for Gaussian fil-
ters, the Nk needed for a given problem depends on a
variety of factors, such as how well prior densities are
approximated by a Gaussian. For example, we find little
to no benefits of tempering for Lorenz (1996) experiments
performed using observation networks that are dense in
space and time, as discussed in Section 5.2. These exper-
iments yield small prior uncertainty between successive
observation times, which is approximated well by a Gaus-
sian. Likewise, each iteration can introduce additional
noise in the solution, which may negate some positive
benefits of tempering for large Nk.

A more efficient way of introducing iterations is
to replace likelihood tempering with a tempering over
marginal weights. This strategy expands the particle

weight regularization in Section 4.1 into a posterior tem-
pering strategy. Recall, the regularized local PF uses
the marginal weight equation 𝜔

n
𝑗
∝
∏Ny

i=1(�̂�
n
i,𝑗)

𝛽
𝑗 , where 𝛽i

enforces a minimum Neff for weights. Following the assim-
ilation of y with regularization, we can repeat the particle
updates, calculating 𝛽𝑗,k for each iteration k based on Nt

eff,
and stopping the processes when

∑Nk
k=1𝛽𝑗,k ≥ 1. For the

last iteration, 𝛽𝑗,Nk must be set to 1 −
∑Nk−1

k=1 𝛽𝑗,k to ensure
the weights sum to 1. The resulting method has proper-
ties similar to likelihood tempering, except the number
of iterations is determined adaptively while enforcing the
requirement that each set of marginal particle weights has
Neff ≥ Nt

eff. Therefore, no additional regularization meth-
ods are needed. As in the likelihood tempering approach,
expanding regularization to include an adaptive set of iter-
ations (so that

∑Nk
k=1𝛽𝑗,k = 1) does not change the asymp-

totic behavior of the filter, as localization is relaxed for
large sample sizes. It also has the desirable property of
iterating only over subsets of variables in x; that is, addi-
tional iterations may not be needed for portions of a
model domain characterized by low variance in particle
weights.

4.3 A hybrid filter

Regularization and tempering strategies provide a natu-
ral framework for combining the local PF with alternative
filters when appropriate. For example, a recent study by
Grooms and Robinson (2021) used an EnKF to update
particles following an initial PF sampling step—exploiting
the same likelihood factorization of past studies. This idea
takes advantage of the fact that the posterior pdf is better
approximated by a Gaussian than the prior when obser-
vation likelihoods are Gaussian (Morzfeld and Hodyss,
2019). A partial update by a PF can adjust particles to
resemble samples from a Gaussian, thus making the EnKF
an appropriate choice for the remaining update.

We apply a near identical strategy as Grooms and
Robinson (2021) for the iterative local PF, which requires
only minor changes to the algorithm. First, the stopping
criteria for iterations is altered so that

∑Nk
k=1𝛽𝑗,k = 𝜅max for

0 ≤ 𝜅max ≤ 1. Note that setting 𝜅max < 1 results in a regu-
larization of the local PF, similar to the method discussed
in Section 4.1. Following the initial set of local PF iter-
ations, the last adjustment is performed using an EnKF
with the measurement error variance inflated by the factor
1∕1 − 𝜅max. The coefficient 𝜅max operates as a hybrid para-
meter, and the scheme approaches the iterative local PF in
the limit 𝜅max → 1 and the EnKF in the limit 𝜅max → 0.

The state-space regularization, tempering, and hybrid
local PF–EnKF methods are summarized in Algorithm 1.
Note that because the three methods share many of the
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Algorithm 1. Regularized, tempered, or hybrid
local PF–EnKF

1 Function tempered_filter_cycle(xn for
n = 1...Ne, y, R, Nt

eff ,𝜅max):
2 𝜅𝑗 = 0 for 𝑗 = 1...Nx
3 while argmin(𝜿) < 𝜅max do
4 for i = 1:Ny do
5 for 𝑗 = 1:Nx do
6 if 𝜅𝑗 < 𝜅max then
7 Compute 𝜌i,𝑗 using choice of

localization function
8 Compute 𝜔

n
𝑗

in (8) recursively using
wn

i and 𝜌i,𝑗

9 for 𝑗 = 1:Nx do
10 if 𝜅𝑗 < 𝜅max then
11 Apply bisection method to estimate 𝛽𝑗

for each set of marginal weights 𝜔n
𝑗

based on Nt
eff

12 𝜅𝑗 ← 𝜅𝑗 + 𝛽𝑗

13 if 𝜅𝑗 > 𝜅max then
14 𝛽𝑗 = 1 − 𝜅max
15 𝜅𝑗 = 𝜅max

16 Update xn for n = 1...Ne using local PF in
Poterjoy et al. (2019) with 𝛽𝑗 in the
exponent of 𝜔n

𝑗

17 switch Filter option do
18 case Regularized local PF do
19 Exit loop

20 case Tempered local PF do
21 Updated particles become prior for

next iteration
22 case Hybrid local PF-EnKF do
23 if argmax(𝜿) = 𝜅max then
24 R ← 1

1−𝜅max
R

25 Update xn for n = 1...Ne using EnKF
26 Exit loop

27 else
28 Updated particles become prior for

next iteration

29 return Updated particles xn for n = 1...Ne

same calculations, they can be expressed compactly in
a single algorithm with switches for determining which
operations should be called by each filter. To satisfy an exit
criterion, each iteration also requires a running sum of 𝛽𝑗,k,
which is represented by 𝜅𝑗 in the algorithmic description.

5 NUMERICAL EXPERIMENTS

This section explores the behavior of regularization, tem-
pering, and hybrid strategies for the Poterjoy et al. (2019)
local PF through numerical simulations. For the first set
of experiments, we use a simple bivariate problem to illus-
trate how tempering alters the adjustment of particles
compared with a single-step approach. The second set of
experiments use the Lorenz (1996) model to compare the
performance of regularized, tempered, and hybrid formu-
lations of the local PF to past local PF configurations and
the ensemble square-root EnKF of Whitaker and Hamill
(2002). These experiments use simulated measurements
to target observation collection scenarios with varying
degrees of spatial and temporal density.

5.1 Non-Gaussian bivariate application

We first form a bivariate data assimilation problem to
examine the impact of different local PF sampling strate-
gies. Though numerous challenges exist for localizing
ensemble filters for high-dimensional problems, the cur-
rent demonstration focuses more narrowly on a case where
marginal dependence exists across a pair of variables. As
discussed in Section 2, many geophysical data assimilation
problems require a careful decoupling of variables, owing
to gradual spatial transitions in error correlations. There-
fore, localization must be able to modulate the dependence
across variables in a controllable manner. For an applica-
tion of this size, we can use Equation (5) from Section 2
to calculate and visualize the localized posterior pdf. This
sample-estimated pdf is adopted for illustrative purposes,
as it approximates the posterior density the candidate
methods are trying to sample from.

Continuing the notation from past sections, let x =
[u v]T and consider the case where v is observed directly by
measurement y with 𝜖 ∼ N(0, 0.1). N() indicates the func-
tion for a normal distribution, which in this case has a
zero mean and variance of 0.1. We will compare four differ-
ent algorithms for sampling from pl(u, v|y): (1) single-step
Poterjoy et al. (2019) filter; (2) single-step Poterjoy et al.
(2019) filter with KDDM; (3) direct KDDM resampling;
and (4) iterative Poterjoy et al. (2019) filter. We do not show
results for the regularized local PF in these comparisons,
since this method represents one iteration of the itera-
tive local PF. Likewise, the tempered transitions only use
the local PF update, instead of the EnKF step discussed
with regard to the hybrid filter (Section 4.3). When local-
ization is used, the bivarate test problem used here has a
multi-modal posterior density, which does not satisfy the
underlying assumption of a Gaussian posterior for this
method to be beneficial. We also draw special attention
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to the direct KDDM sampling algorithm (experiment 3).
When multiple observations are present, this is the only
algorithm of the four that bypasses serial updates in place
of a less costly independent update to u and v. As the
kernel density estimates (KDEs) used for the KDDM
approach a zero bandwidth, this method becomes iden-
tical to performing an independent bootstrap resampling
on sorted particles for each variable. Increasing the band-
width leads to a smoothing of posterior samples in a man-
ner that is similar to the non-serial localized PF sampling
strategies discussed in Section 2. For these experiments,
we use a bandwidth that is equal to the posterior standard
deviation for each variable, which is a robust option for
real weather applications (Poterjoy et al., 2019).

For the prior, we draw 1,000 particles from a bimodal
distribution by sampling half from N(x1, 0.1I) and half
from N(x2, 0.1I) , with x1 = [−1,−1]T, x2 = [1, 1]T, and I
is an identity error covariance matrix. The large particle
size helps illustrate the asymptotic behavior of the local-
ized PF density approximation in Section 2. We acknowl-
edge that localization is not needed for this problem
when Ne = 1,000—and even induces bias in the poste-
rior density—but adopt this approximation primarily to
examine how various localized filters attempt to sample
from the density assumed when localization is introduced.
For visualization purposes, it is more practical to calcu-
late the prior and posterior pdfs using Gaussian KDEs
instead of a Dirac delta functions, which allows for smooth
contours in figures. In doing so, we choose kernels with
a standard deviation of 0.2 for all pdfs. For reference,
Figure 2a–c shows prior samples and KDEs for p(u, v) and
the true (non-localized) p(u, v|y), as well as marginals for

each density. For all subsequent figures in this section,
we plot the localized posterior density pl(u, v|y), which
is the posterior density resulting from a decoupling of u
and v using 𝜌u,v = 0.75. This posterior differs from the true
posterior in that dependence between u and v is modified
in a manner typically used to treat sampling error during
data assimilation—as such, it is always biased whenever
true dependence exists, which is inevitable for geophysical
models. Without localization, the resulting marginals are
close to Gaussian (Figure 3a), since particles would only
retain large weights in the positive mode. The resulting
decoupling leads to non-zero posterior probability in the
upper left portion of the domain (Figure 4a) as the directly
observed variable retains the same posterior marginal, but
the unobserved variable retains both modes—albeit with
less density in the negative one. We remind readers that the
sole purpose of this exercise is to examine how different fil-
ters sample from the localized density instead of the true
posterior because the true posterior cannot be obtained in
practice.

We first examine how the single-step Poterjoy et al.
(2019) filter draws samples from pl(u, v|y). By construction,
this method properly samples from p(v|y) as indicated by
the markers in Figure 3b. For the unobserved variable, the
method draws numerous particles between the two modes
in p(u|y), thus failing to maintain consistency with the
analytical solution. This example shows the limitations of
fitting only two moments during the update of unobserved
variables, thus motivating the additional probability map-
ping procedure discussed in Poterjoy (2016). When KDDM
is performed following the single-step update (Figure 4),
the suboptimal update is corrected; that is, particles that

F I G U R E 2 (a) Schematic showing the true prior probability density function (pdf; blue contours), true posterior pdf (red contours and
shading), and observation for bivariate data assimilation experiments (dashed line). Marginal prior and posterior pdfs are also shown in (b)
and (c) for variables v and u, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 (a) Schematic showing the localized posterior probability density function (pdf; red contours and shading), posterior
particles (red markers), and observation (dashed line) for an experiment using the Poterjoy et al. (2019) local particle filter. Marginal posterior
pdfs and particles are also shown in (b) and (c) for variables v and u, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Same as Figure 3, but with the kernel density distribution mapping step applied after updates [Colour figure can be viewed
at wileyonlinelibrary.com]

fall in the low probability region between the two modes
are shifted into the modes. The success of this approach,
however, requires applying the sampling and merging pro-
cess (i.e., Figure 3) prior to the additional adjustment for
p(u|y). The sampling step ensures particles are properly
ordered before their marginals are mapped into posterior
KDEs through KDDM.

Figure 5 demonstrates the outcome of applying
KDDM directly to adjust prior particles based on
marginal posterior pdfs alone. This strategy is similar
to the one-dimensional transport map or anamorphosis
technique discussed in Farchi and Bocquet (2018) for
updating particles based on marginal quantities alone.
They find this approach to give reasonably accurate

solutions for the Lorenz (1996) model, using the obser-
vation network examined in their study. Particle updates
from KDDM provide a consistent sampling from each
marginal (Figure 5b,c). The sampling for unobserved
variable u, however, is not explicitly conditioned on
the sampling performed for v. Instead, p(u|v) is deter-
mined by how particles are sorted prior to sampling
and by parameters that enforce smoothness, such as
the kernel bandwidth in KDDM. As a result, KDDM
and other transform strategies that operate on poste-
rior marginals independently will lead to a suboptimal
sampling from the multivariate posterior. As discussed
in Poterjoy (2016), KDDM preserves quantiles when
adjusting particles, which allows the method to retain

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 5 Same as Figure 3, but with kernel density distribution mapping used in place of the Poterjoy et al. (2019) update step
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Same as Figure 3, but for the iterative local particle filter [Colour figure can be viewed at wileyonlinelibrary.com]

marginal dependence when transforming particles. In
this case, dependent structure represented by prior
particles persists through the posterior update, which
induces artificial bimodal behavior within the first pos-
terior mode (Figure 5a). This behavior is also commonly
observed in deterministic ensemble square-root Kalman
filters when the prior pdf is multi-modal (e.g., Poterjoy
et al. 2017, figure 4).

Lastly, Figure 6 shows the results of updating par-
ticles through a series of tempered transitions. Particle
weights are forced to satisfy Neff = 0.8Ne, which means
only a small number of particles are removed when
sampling from p(v|y) during each iteration. The update
equation in Equation (7) then becomes sufficient for pro-
ducing particles that satisfy non-Gaussian properties of
the localized posterior, despite being derived using the

first two moments. For reasons discussed in Section 4,
iterations allow the local PF to provide samples from a
non-Gaussian posterior without a need for an additional
KDDM step (Figure 6a).

5.2 The 40-variable dynamical system

For the next set of experiments, we adopt the Lorenz (1996)
dynamical model to explore the behavior of the new filters
in a sequential data assimilation framework. This model
consists of Nx equally spaced variables defined on a peri-
odic domain, which are governed by a set of Nx differential
equations:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (11)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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where xi+Nx = xi and xi−Nx = xi. The model is integrated
forward in time using the fourth-order Runge–Kutta
scheme and a model time step of 0.05. These exper-
iments use the standard configuration of the Lorenz
(1996) model, with Nx = 40 and F = 8, except for one
set of experiments that include “model error”; in this
case, measurements are simulated from a model trajectory
with F = 9.

As discussed in Section 1, the current study is moti-
vated by geophysical data assimilation problems char-
acterized by biased prior errors, but accurate measure-
ments, which are known to yield challenges for PFs,
including ones that adopt localization. To reproduce this
problem, we simulate numerous observation networks
for the Lorenz (1996) model, each differing in spatial
and temporal density to compare the performance of the
new filters. We vary the measurement density by simu-
lating sets of observations that are spaced every of one,
two, and four grid points; that is, Ny = 40, Ny = 20, and
Ny = 10, respectively. We also vary the forecast integra-
tion time T) between measurements, using T = 0.05, T =
0.10, T = 0.20, and T = 0.30. Measurement errors are
sampled from N(0, 0.05), thus providing highly accurate
observation networks, which can induce particle weight
collapse as described in Section 3. For simplicity in nota-
tion, we refer to the regularized local PF as “local RPF,”
the iterative local PF as “local IPF,” and the hybrid iter-
ative local PF as the “local IPF–EnKF.” We also per-
form EnKF experiments using the Whitaker and Hamill
(2012) square-root filter with Anderson (2007) adap-
tive state-space prior inflation. This filter and inflation
methods are commonly used for geoscience applications,
thus providing a suitable benchmark for comparing new
methodology.

We perform two sets of experiments: one using Ne =
40 particles and another using Ne = 120 particles. Each
experiment consists of 11,000 observation times, with the
first 1,000 times designated for spin up. For localization,
we adopt a Gaussian-shaped localization function with a
width controlled by a radius of influence (ROI). We rigor-
ously tune all filter parameters, namely ROI, Neff, 𝛾 , and
adaptive inflation parameters needed for the EnKF, to pro-
vide the smallest root-mean-squared error (RMSE) for a
given observation network. To reduce the parameter space,
we fix the hybrid parameter 𝜅max at 0.5 for local IPF–EnKF
experiments. This choice is motivated by the comparable
performance of the local IPF and EnKF for the given obser-
vation networks. Filter sensitivity to this parameter will
be explored in subsequent studies for real problems. We
also refer to Kurosawa and Poterjoy (2021) for an exami-
nation of the local IPF–EnKF for nonlinear measurement
operators and its comparison with iterative ensemble and
variational smoothers.

We summarize numerical results from all Lorenz
(1996) experiments in Figures 7 and 8, which shows the
RMSE of each method as a function of Ny and T. In gen-
eral, we find the relative performance of each method to
vary substantially with observation density. For observa-
tion networks that are dense in both space and time, the
EnKF and local IPF–EnKF produce the smallest errors,
owing to the prior distributions remaining close to Gaus-
sian over time. The advantage of the EnKF declines when
Ny is decreased to 10 but T remains small, as the prior
spread increases and becomes less Gaussian. More notably,
the regularized local PF configurations show a sharper
decline in skill as T increases, regardless of the spatial den-
sity of measurements. The decline in performance is less
dramatic for experiments performed with Ne = 120, owing
to the lesser need for regularization. This result is expected,
as fewer particles obtain high likelihoods for the accu-
rate measurements simulated in these experiments, which
is most detrimental when Ne is small. We also note that
Poterjoy et al. (2019) show the original non-regularized
Poterjoy (2016) filter diverging for sparse observation net-
works of this type. Regularization helps stabilize these
methods by artificially decreasing the impact of poten-
tially accurate measurements. Despite this deficiency, the
newly proposed regularization strategy (local RPF) pro-
vides comparable RMSEs to the observation error inflation
introduced by Poterjoy et al. (2019). The new method, how-
ever, has the added benefit of being naturally extended
to the adaptive tempering strategy used for the local IPF
experiments.

When Ny is small and T is large, the local IPF pro-
vides improvements over the non-iterative methods and
yields RMSEs that are more comparable to the EnKF. The
number of iterations, though chosen adaptively through
Nt

eff, remains low for the experiments performed in this
study. The maximum number of iterations for a given
marginal does not exceed five for any observation net-
work, with the exception of cycles performed during the
“spin-up” period. This algorithm also outperforms the
EnKF when model error is introduced (Figure 7d). We
hypothesize that the improvements over EnKF for the
model error experiments follow mostly from the mix-
ing strategy (controlled by parameter 𝛾), which increases
diversity in particles between successive sampling steps.
We find further improvements when the local IPF is
extended to include an EnKF step during iterations—thus
forming the hybrid local IPF–EnKF. This algorithm out-
performs all methods tested here and is especially ben-
eficial in experiments with very sparse observations and
model error (i.e., Figure 7c,d). We also note that the
performance of the hybrid filter does not decline sub-
stantially between the Ne = 120 and Ne = 40 experiments,
thus showing greater value for real geophysical data
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assimilation problems, which use limited numbers of
particles.

In addition to comparing posterior RMSEs, we perform
a rank histogram verification (Anderson, 1996; Hamill and
Colucci, 1996; Talagrand et al., 1997) on posterior parti-
cles generated over one set of Ne = 40 experiments for a
regime where RMSEs are below the measurement uncer-
tainty, but non-Gaussian priors are expected to have a role
in interpreting the results. These experiments use a per-
fect model and an equally spaced observation network
defined using Ny = 20 and T = 0.2 (Figure 7b). Assimilat-
ing measurements from this observation network poses
challenges because of nonlinearity in the model dynamics
and data sparsity, which can be isolated in perfect-model
experiments. With Ne = 40, either regularization (for PFs)
or prior inflation (for EnKF) is needed to retain sta-
ble solutions, which are expected to degrade the prob-
abilistic skill of the ensemble filters. Furthermore, we
extended these experiments to include 106 observation
times to increase the reliability of the rank histogram
verification.

Figure 9 shows the rank-histogram verification for a
pair of observed and unobserved variables, x1 and x2,
respectively. In general, the regularized PFs and EnKF pro-
duce rank histograms that exhibit larger frequencies near
the periphery of the sorted particles, indicating an under-
dispersion of particles for these methods. This result is
expected, as configurations that yield the smallest RMSEs
tend to coincide with the smallest regularization needed
to prevent filter divergence over the course of the experi-
ments. Though not shown, the EnKF tends to produce flat-
ter histograms for denser observation networks and highly
U-shaped histograms for sparse networks. Therefore, we
attribute the underdispersion to Gaussian assumptions

made by the EnKF and adaptive inflation. For the regu-
larized PFs, the shape of the histograms tends to remain
similar to those shown in Figure 9, which is suboptimal
but consistent across experiments.

The local IPF and IPF–EnKF algorithms yield nearly
uniform histograms. We also find these results to be less
sensitive to choices of Neff, since the two methods use this
parameter to dictate the number of tempered transitions,
rather than regulate the update. We also draw attention to
the ability of the local IPF–EnKF method to maintain a flat
histogram for the current observation network. This result
indicates that the local PF is effective at shifting particles
into an approximate Gaussian before applying the EnKF
step for this particular application.

6 DISCUSSION AND
CONCLUSIONS

The theoretical benefits of PFs motivate their applica-
tion for a large range of numerical weather predic-
tion applications. These applications include high-impact
weather events, such as severe convective storms and
tropical cyclones, which are guided by highly nonlinear
dynamics and observed by remote-sensing platforms on
radars and satellites. In addition to posing challenges for
Gaussian-based data assimilation techniques, these appli-
cations are also characterized by large sampling errors in
ensemble estimates for prior probability densities, which
limit the direct use of PFs—even with localization.

This study introduces new regularization, tempering,
and hybrid approaches for the local PF of Poterjoy (2016)
and Poterjoy et al. (2019), which aim to improve the effec-
tiveness of this filter for high sampling-error regimes.
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Regularization reduces the impact of observations on par-
ticle weights, which directly prevents weight collapse
when few or no particles contain high likelihoods. Because
regularization is achieved by raising particle weights to a
power less than one, this strategy permits the assimila-
tion of observations multiple times in the same manner
as iterative data assimilation strategies that rely on a fac-
torization of the likelihood function. Likewise, the use
of an alternative—possibly parametric—filter during the
last iteration of the tempered local PF is trivial. Following
past studies (e.g., Frei and Künsch, 2013; Chustagulprom
et al., 2016; Grooms and Robinson, 2021), we use this
factorization to form a local PF–EnKF hybrid.

To examine the behavior of iterations for the local PF,
we derive the posterior density that results from local-
ization and form a bivarate data assimilation problem
that produces a multivariate bimodal posterior. Through
numerical simulation, we examine how different methods
draw samples from a multivariate non-Gaussian density,
which is a known challenge for filters currently used for
high-dimensional applications. The serial local PF intro-
duced in Poterjoy (2016) solves multivariate problems of
this type by first drawing samples for the marginal pos-
terior density in observation space and then updating
unobserved model variables using a mix of sampled and
prior particles. Because the update of unobserved variables
only considers the first two moments, we find this strat-
egy to be suboptimal for the bimodal application. Likewise,
a sampling strategy that draws quasi-independently from
marginals to approximate samples from the full multivari-
ate posterior density is also found to be suboptimal. For the
iterative local PF, the single-step update is replaced with
a series of smaller updates, which we find to force appro-
priate transitions of particles between modes, despite only
fitting two moments. This benefit follows from the limited
degrees of freedom that exist when only a small number of
particles need to be adjusted during each iteration.

We compare the filtering performance of the regular-
ized, iterative, and hybrid local PF with a past imple-
mentation of the local PF (Poterjoy et al., 2019) and a
square-root EnKF (Whitaker and Hamill, 2012) using the
40-variable model of Lorenz (1996). From these experi-
ments, the iterative filter yields the largest improvements
over regularized local PF strategies when observations are
sparse in space and time. The number of prior particles
with large likelihoods decreases considerably when prior
error variance becomes much larger than measurement
error variance—thus producing the low observation error
regime that motivates the current study. Furthermore, we
find the local IPF–EnKF hybrid to outperform both the
iterative local PF and EnKF for nearly all measurement
networks examined. The performance gains come in the
form of reduced posterior RMSEs, as well as more uniform

rank histograms, which demonstrates the benefits of this
approach for applications characterized by non-Gaussian
prior densities by approximately Gaussian posterior densi-
ties.

Though the iterative strategy introduced in this study
brings considerable performance gains to the local PF,
it also adds to the computational complexity. The num-
ber of iterations is determined adaptively in the algorithm
through an effective ensemble size parameter, making it
difficult to estimate how many additional calculations are
required. This aspect of the algorithm is further compli-
cated by allowing the number of iterations to vary across
model variables. Therefore, data assimilation problems
characterized by biased priors in significant portions of the
state space will require more iterations—and more com-
putational resources—than those with low error. Never-
theless, savings can be achieved by batching observations
geographically or ignoring observations that yield very
small changes to particle weights. These approaches have
already been applied for weather forecasting applications
of the local PF and will be discussed in a future study.
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APPENDIX A

Calculations of the localized posterior density are not
tractable for large Nx, but further insight into the role
of localization for higher dimensions can be obtained by
considering the case where the variables in x are condi-
tionally independent. This assumption is not as restrictive
as those made by filters that sample independently from
posterior marginals, but it is likely not appropriate for com-
plicated posterior pdfs, such as those with multiple modes.
For this exercise, we will extend Equation (5) for Ny > 1
and Nx > 2. It is sufficient to consider the case of Ny = 1
and Nx = 3, as the posterior pdf calculation for successive
observations would acquire the weighted delta function
approximation of the posterior marginals obtained from
the previous observations in sequence.
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First, let x = [s u v]T, where v is directly observed by y
and s and u are unobserved state variables. Specify localiza-
tion coefficients for random variable pairs {s, v} and {u, v} to
be 𝜌s,v and 𝜌u,v, respectively, and assume conditional inde-
pendence between s and u given v. The posterior pdf for the
three-variable problem can then be expressed as a product
of three marginals:

p(x|y) = p(s,u, v|y),
= p(s|u, v)p(u|v)p(v|y),
= p(s|v)p(u|v)p(v|y). (A1)

Note that the third line of Equation (A1) holds for the
standard PF, because knowledge of how u is sampled pro-
vides no new information for s when provided with knowl-
edge of how v is sampled. By adopting a PF approximation
for p(v|y) and using the strategy introduced in Section 2
for localizing the remaining conditional distributions in
Equation (A1), we can write

p(x|y) ≈ pl(x|y),

=
Ne∑

l=1

Ne∑

m=1

Ne∑

n=1
wn

[

𝛿ln𝜌s,v +
1

Ne
(1 − 𝜌s,v)

]

×
[

𝛿mn𝜌u,v +
1

Ne
(1 − 𝜌u,v)

]

× 𝛿(s − sl)𝛿(u − um)𝛿(v − vn).
(A2)

Equation (A2) can be integrated with respect to s and v
or u and v to arrive at the same form of posterior marginal
as in Equation (6) for each unobserved variable. Note that
this form requires that localization coefficients only need
to be specified between an observation-space variable v
and unobserved model variables—as is the case for other
ensemble filters that perform a joint observation–model
space localization.

We can further show that p(s|u) adopts the same
formulation as other localized conditionals, but with
𝜌s,u = 𝜌s,v𝜌u,v. Therefore, dependence across variables is
modulated by products of localization coefficients under
assumptions of conditional independence. To begin, start
with the localized PF approximation for p(x):

p(x) ≈ p(s|v)p(u|v)p(v),

≈
Ne∑

l=1

Ne∑

m=1

Ne∑

n=1

1
Ne

[

𝛿ln𝜌s,v +
1

Ne
(1 − 𝜌s,v)

]

×
[

𝛿mn𝜌u,v +
1

Ne
(1 − 𝜌u,v)

]

× 𝛿(s − sl)𝛿(u − um)𝛿(v − vn). (A3)

We can then integrate Equation (A3) with respect to v
to get the following expression for the localized joint pdf
for s and u:

pl(s,u) = ∫
R

Ne∑

l=1

Ne∑

m=1

Ne∑

n=1

1
Ne

[

𝛿ln𝜌s,v +
1

Ne
(1 − 𝜌s,v)

]

×
[

𝛿mn𝜌u,v +
1

Ne
(1 − 𝜌u,v)

]

× 𝛿(s − sl)𝛿(u − um)𝛿(v − vn) dv,

=
Ne∑

l=1

Ne∑

m=1

Ne∑

n=1

1
Ne

[

𝛿ln𝜌s,v +
1

Ne
(1 − 𝜌s,v)

]

×
[

𝛿mn𝜌u,v +
1

Ne
(1 − 𝜌u,v)

]

𝛿(s − sl)𝛿(u − um),

=
Ne∑

l=1

Ne∑

m=1

Ne∑

n=1

[
1

Ne
𝛿ln𝛿mn𝜌s,v𝜌u,v +

1
N2

e
𝛿ln𝜌s,v(1 − 𝜌u,v)

+ 1
N2

e
𝛿mn𝜌u,v(1 − 𝜌s,v) +

1
N3

e
(1 − 𝜌s,v)(1 − 𝜌u,v)

]

× 𝛿(s − sl)𝛿(u − um),

=
Ne∑

l=1

Ne∑

m=1

[
1

Ne
𝛿lm𝜌s,v𝜌u,v +

1
Ne

𝜌s,v(1 − 𝜌u,v)

+ 1
Ne

𝜌u,v(1 − 𝜌s,v) +
1

N2
e
(1 − 𝜌s,v)(1 − 𝜌u,v)

]

× 𝛿(s − sl)𝛿(u − um),

=
Ne∑

l=1

Ne∑

m=1

1
Ne

[

𝛿lm𝜌s,v𝜌u,v +
1

Ne
(1 − 𝜌s,v𝜌u,v)

]

× 𝛿(s − sl)𝛿(u − um). (A4)

These steps result in the same equation that would be
obtained if one were to modulate the conditional density
p(s|u) using a localization coefficient of 𝜌s,u = 𝜌s,v𝜌u,v. This
exercise has practical importance, as it can be used to com-
pute estimates of the covariance matrix for the localized
posterior, which is needed for some filters (e.g., Morzfeld
et al., 2018).

APPENDIX B

For large applications, where calculations of {𝜔1
𝑗
, … , 𝜔

Ne
𝑗
}

may require O(103)–O(105) products of small numbers,
special care is needed to avoid underflow errors. In prac-
tice, the log form described in previous sections for
V n

i,𝑗 should be used for weights. We also recommend
pre-multiplying ln(�̂�n

𝑗
) by a first-guess 𝛽𝑗 before transform-

ing back through an exponential function to estimate a
final 𝛽𝑗 . Following these steps, calculations of 𝜔n

𝑗
require

evaluating
∑Ny

i=1 ln(�̂�n
i,𝑗) at each grid point.
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To reduce computation cost, we recommend multi-
plying �̂�

n
i,𝑗 by Ne and applying a first-order Taylor series

approximation about Ne�̂�
n
i,𝑗 − 1:

ln(Ne�̂�
n
i,𝑗) = ln[(Newn

i − 1)𝜌i,𝑗 + 1],

≈ (Newn
i − 1)𝜌i,𝑗 , (B1)

which is sufficiently accurate when |(Newn
i − 1)𝜌i,𝑗| ≤ 0.3.

This approximation greatly reduces the number of log
calculations needed for computing 𝜔

n
𝑗
, thus reducing the

cost of regularization and the subsequent strategies that
rely on this method.

APPENDIX C

The local PF adopts an additional mixing strategy in
Equation (7) for increasing particle diversity between
iterations. This approach operates by multiplying r1
by a user-specified parameter 𝛾 , where 0 ≤ 𝛾 ≤ 1, and
re-recalculating r2 to fit the posterior variance for each
variable. Ignoring indices for state variables and consider-
ing a single marginal variable x, we start by setting

𝜎
2 = 1

Ne − 1

Ne∑

n=1
(𝛾r1x′kn + r2x′n)2, (C1)

where prime terms indicate the posterior mean has been
removed and 𝜎

2 is the posterior variance estimated from
importance weights. One solution for r2 that satisfies this
equation is the positive root of

t3r2
2 + t2r2 + t1 = 0, (C2)

where

t1 = (𝛾r1)2
Ne∑

n=1
(x′kn)2 − 𝜎

2(Ne − 1), (C3)

t2 = 2𝛾r1

Ne∑

n=1
x′kn x′n, (C4)

t3 =
Ne∑

n=1
(x′n)2. (C5)

The r2 found from this equation is used in the particle
update step and the posterior particles are recentering on
the posterior mean estimated from importance weights.
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